If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6r^2-15r-6=0
a = 6; b = -15; c = -6;
Δ = b2-4ac
Δ = -152-4·6·(-6)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{41}}{2*6}=\frac{15-3\sqrt{41}}{12} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{41}}{2*6}=\frac{15+3\sqrt{41}}{12} $
| x*11/28+x=17 | | 12-6x+4x-8x-2(x-8)=0 | | 75=19x+18 | | 0.5(5x-3)=1.2 | | 2x-7.2=4x-5.2 | | -35=1/2+x | | (145)+(2x-49)+(x)=180 | | 145+(2x-49)+x=180 | | 400-20y=10-1.25y | | x+2x+(x+10)+(x+18)+3x+(x-1)=360 | | (x-10)+(x-20)+21+42+29+(x+14)+x=360 | | (3x-11)+(x+8)+(2x+7)+(x-8)+x=540 | | 6x-40+x+20+(180-(180-3x)=180 | | (x+10)+(3x-6)+(2x-8)+x=360 | | 1.8x=36.4 | | 2.2x=36.4 | | 5^2a+26a=24 | | 4x^2-72x+320=96 | | 6^2+3^2=c^2.c | | -6=5x-8 | | -5(6x-4)+6=30x+26 | | 3/2x+5/2=-1 | | 7x+7=-6+5x+19 | | 83=y+77 | | t+27=83 | | b-10=29 | | 6-(2z-6)=6-3z | | 2x^2(2-20)=x^2+-16 | | 4(n-3)-(5-7n)=10 | | 2x^2(2-20)=(x+4)(x-4) | | y=-3(3(-3)-2) | | y-y3=16 |